
Maximizing CCC and the March 
to an Unburnable Probe

Dr. Hadi Najar
David Raschko

FormFactor



2

Agenda

• Why Does CCC matter?

• Hybrid Probe Review

• Next Generation Probe Review

• Metallized Guide Plate Review

• Maximized CCC Conclusion
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Industry Trends
• High Performance Compute and GPU 

applications are marching to 1kW 
devices (1,000A at 1V)

– Currently shipping 400A devices today (400W 
at 1V)

– Newest HPC devices have >50 Billion 
Transistors

• New nodes and technology 
advancements are creating downward 
pressure on yield

– Yield drop with each node transition
– Transitions to more complex digital coms 

(PAM4) decrease yield
– Larger die for HPC and GPU applications are 

lowering wafer yield

• As yields decrease and as device power 
increases Probe Card capability and 
CCC must increase

D
ec

la
re

d 
M

ax
im

um
 P

ow
er

 C
on

su
m

pt
io

n 
(W

)

GPU Power Consumption Trend

https://www.techspot.com/article/2540-rise-of-power/
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CCC Terminology

• Current Carrying Capability
– The amount of current that a probe or spring can withstand before burning or damage 

occurs

• ISMI CCC
– Current applied where a 20% lower force is observed in a probe (spring) 

• MAC (Maximum Allowable Current)
– Current applied where a change in probe force or planarity is first observed

• ECCC (Effective Current Carrying Capability)
– An averaging of total current that a group of probes can withstand before burning occurs
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Why Does CCC Matter?

• Probe Current Carrying Capability 
prevents probe burning when 
something goes wrong during wafer 
testing
– Shorts in the DUT
– Unstable contact between the DUT and 

Probe card

• High CCC Probes improves uptime 
and MTBF as the probe card 
becomes more robust and resistant 
to probe burning

Defect Density over Time by Node

https://www.anandtech.com/show/16028/better-yield-on-5nm-than-7nm-tsmc-update-on-defect-rates-for-n5
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Methods for Improving CCC
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Hybrid Probes

Next Generation Probes

Metallized Guide Plates
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Hybrid Architecture
• SOCs have PWR/GND in the middle of the Device and I/O in the periphery of the Device

– PWR/GND typically at ≥150um pitch
• Can use wider, high CCC probes

– I/O typically at ≤90um pitch
• Can use smaller, lower CCC probes

• By combining probe types in the Probe Card the Effective CCC is increased

Dr. Hadi Najar
David Raschko

Hybrid Spring Head Probe Card – V93K DD 
Single DUT Layout by Probe Type

DUT Zoomed In

Tighter Pitch Probes 
with lower CCC

Wider Pitch Probes 
with Higher CCC
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Hybrid Increasing Available CCC
• FFI Hybrid probe technology increases probe card available CCC 

– combining tight pitch low CCC probes and wide pitch High CCC probes in the same 
design

• Product A as a test case
– Min Pitch = 90um
– Requires MF100F for 90um pitch with CCC of 1,200 mA
– If hybrid is used available CCC can be improved by 20% to 1,435 when using 

MF130/MF100

Product A x8 Hybrid Available CCC Example
Hybrid Probe Type MF100F MF130F
CCC (mA) 1,200 1,500
Probe Count 4,216 15,248
Total CCC (mA) 5,059,200 22,872,000
Total Probe Card Available CCC (mA) 1,435
% Improvement over Single Probe (MF100) 20%Dr. Hadi Najar

David Raschko
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Effective CCC Comparison on Product A at 90um Pitch

Maximizing Effective CCC

• Hybrid probes provide 20% higher effective CCC relative to single probe solutions
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FFI MT Probe

• MT next generation probes provide 
>50% improved CCC over current 
gen. MEMS probes

• Higher speed performance with 
shorter probe length.

• Hybrid compatible MT probe family 
to further enhance CCC and high-
speed capability.

• Metallized Guide Plate can further 
increase effective CCC to >3A
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Maximizing Effective CCC

• Hybrid probes provide 20% higher effective CCC relative to single probe solutions
• MT Probes provide 42% higher CCC relative to last generation probes

– 78% improvement when combined with Hybrid
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What is Metallized Guide Plate? (Analogy)

OVERFLOW!! 
(No MeGP)

Distributed
(MeGP)
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What is Metallized Guide Plate?

• Metallized Guide Plates (MeGP) connect 
VDD and GND nets together through 
metal patterns on the Guide Plate
– Provides alternative current path when 

overcurrent events occur
– Enables Improved Contact with the DUT 

through alternative current paths

Metallization High Magnification

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡

𝐼𝐼1𝐼𝐼2

𝑅𝑅1,𝑡𝑡𝑡𝑡𝑡𝑡

𝑅𝑅1,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅2,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑅𝑅2,𝑡𝑡𝑡𝑡𝑡𝑡 𝑅𝑅𝐺𝐺𝐺𝐺

Metallization 2-Probe Circuit
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Examples of how MeGP can help

Current Spikes are
re-distributed in MeGP case

No MeGP Poor contact or disconnect
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MeGP Technical Terminology

rb: Probe body + DE Cres
rc : Tip-MeGP Contact resistance
rtr: Trace resistance

Space transformer

LGP

UGP

Glass Wafer

Metal

Cres_DE

Cres_tip

Cres_megp
R_probe

(1)

(2)

(3)

rbrc

rtip
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Generalized MeGP Effective CCC model (building block)

Iin

Iprobe

Idist

…

Rdist LGP

UGP

Metal

Iin

Idist

Iprobe

rb: Probe body + DE Cres
rc : Tip-MeGP Contact resistance
rtr: Trace resistance
N: Number of probes
Rdist: resistance of distributed network

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 +
𝑟𝑟𝑏𝑏

𝑟𝑟𝑐𝑐 + 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

amplification factor

Effective CCC

𝑹𝑹𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 = �
𝑛𝑛=1

𝑁𝑁
1

𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑡𝑡𝑡𝑡(𝑛𝑛) + 𝑟𝑟𝑏𝑏

−1
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Effect of trace resistance and number of probes

(2) For large gang numbers, N, the 
equation reduces to:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2 = 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 +
𝑟𝑟𝑏𝑏
𝑟𝑟𝑐𝑐

(1) If 𝑟𝑟𝑡𝑡𝑡𝑡 << 𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑏𝑏, the CCC will be layout 
independent, and the general equation reduces to:

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸1 = 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 +
𝑟𝑟𝑏𝑏

𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑐𝑐 + 𝑟𝑟𝑏𝑏
𝑁𝑁

1 + 𝑟𝑟𝑏𝑏
𝑟𝑟𝑐𝑐

is the best CCC amplification factor one can get.

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 +
𝑟𝑟𝑏𝑏
𝑟𝑟𝑐𝑐

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

No. of probes in a net (N)
EC

CC

rb: Probe body + DE Cres
rc : Tip-MeGP Contact resistance
rtr: Trace resistance
N: Number of probes

Dr. Hadi Najar
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Iprobe
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Validation using measured CCC and True MeGP CRES data

baseline

Best amplification factor

 Excellent agreement between model and experiment was achieved.
 ECCC showed a 65% average improvement for 20 connected probes.

Dr. Hadi Najar
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𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 +
𝑟𝑟𝑏𝑏

𝑟𝑟𝑐𝑐 + 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

amplification factor

Effective CCC
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Model Extension to real cases – Current Spike events

LGP

UGP

Metal

Iin+Δi

Idist=αIin

Iin Iin Iin Iin Iin

Ip IpIp=βIin

LGP

UGP

Metal

Iin

Idist=0

Iin Iin Iin Iin Iin

Ip IpIp=Iin

Ideal case with no current variation Current spike event
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Numerical example

ST

LGP

UGP

Metal

1.2×Iin

Idist=1.06×Iin

Iin Iin Iin Iin Iin

Ip IpIp=1.14×Iin

• For a 20-ganged probes with negligeable 
trace resistance, α = 32% and β = 68%.

• A 20% increase in nominal current (Iin), 
translates to 6.4% increase in Idist and 
13.6% in Iprobe.
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MeGP Design Challenges

• Challenge: Design of the MeGP is 
difficult due to the number of nets 
and probes involved.
– A design error could be fatal in the yield 

of the MeGP leading to shorts from 
VDD to GND

– Design complexity could significantly

• Solution: Automated Design and 
DFM rule implementation
– Eliminates mistakes from  manual 

design
– Decreases design cycle time to a few 

hours

Design Automation Improves Design Cycle 
Time and Reduces Errors
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MeGP Verification Challenges

• Challenge: MeGP needs to be 
verified for shorts before stitching 
the probes and completing 
assembly of the Probe Card
– POR process flow verifies electrical 

continuity with PRVX
• If short is found the Probe Head would 

need to be disassembled and fixed
– Long Cycle times at the last step of the 

manufacturing process

• Solution: Implementation of Flying 
Probe Test after MeGP Plating
– Allows rework of GPs if needed
– Ensures high quality through 

manufacturing process

Flying 
Probe 
Test 
Contact 
Points

Microholes

Flying Probe Test Contact Points
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Maximizing Effective CCC

• MeGP Improves Effective CCC by 65% depending on the probe architecture
• FFI has achieved the first >3A CCC Probe card at 90um pitch using Next generation MT 

Probes, Hybrid probes, and Metallized Guide Plate
– Short Cycle Time and Excellent quality guaranteed through Design Automation and Outgoing Flying Probe Test

MT Hybrid with MeGP
provides Best Effective 
CCC >3A

Dr. Hadi Najar
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